Thursday, January 12, 2017

What To Fund in 2017?

Several weeks ago, I was having lunch with someone heavily involved in JDRF, and he asked me for my opinion about what research they should fund.   I'm embarrassed to say that I was surprised by the question, and I did not have a good answer for it.  However, I've now had some weeks to think about it, and it is a question that has come up before, so here are my "top five" answers:

The Cell Educator
http://cureresearch4type1diabetes.blogspot.com/search/label/Zhao

The stem cell educator is a machine which takes the immune cells from a person's blood, exposes them to various organic molecules which are designed to change their behavior so they learn not to attack beta cells.  The cells are then returned to the body.  This device has already gone through a phase-I trial in China, and the results were the best I've ever seen in terms of people generating more of their own insulin after treatment.  The effect lasted for months and in some cases years.  It was very positive.

So my simple minded attitude is, if this is the best phase-I results I've ever seen, it makes sense to fund a push into phase-II (or at least a second phase-I trial done in the US).  Now this is not as obvious as it might sound.  JDRF did fund some animal work at the University of Florida, but the results were never published.  (Not a good sign.)   Similarly, there was some work in Spain, in people, and it was discussed in conferences, but never published, at least not that I've seen.  (Not a good sign, either.)   And that Spanish data did not sound as positive as the original Chinese work.  But at the end of the day, I'm willing to put some money into seeing what happens when a clinical trial is run in the US, even it if is a small one.

Verapamil
http://cureresearch4type1diabetes.blogspot.com/search/label/Verapamil

Verapamil is a high blood pressure medicine which the researchers hope could cure type-1 diabetes if given during the honeymoon phase.  As far as I know, it's method of operation is unique.  Plus, it has the advantage of already being approved, so it could quickly be used off label, and eventual approval would be quicker than other drugs.  But it is honeymoon only.

The reason they are on the list is because it is clear to me that they are having trouble recruiting enough people to complete their study.   I hate that.  They are running the entire study from one site, and that limits the area from which they can recruit.   I'm hoping some JDRF money would let them start up another site or two, so they could get the people they need.

INSULETE
(no previous blogging: in animal testing)
http://www.wisbusiness.com/index.Iml?Article=383101

Because this research is still in animal testing, I've never blogged on it, so why do I like it?  For several reasons: First, it uses gene therapy to reprogram a person's cells to generate insulin in response to sugar, and that is novel, at least as far as I know.  Second, the targeted cells are not pancreatic cells, they are liver cells.  This is important, because I think there is a reasonable chance that these new cells will not be targeted by the body's autoimmune attack.

It's not a sure thing; we don't know exactly why beta cells are targeted.  If it has something to do with their pancreatic location or their beta cell nature, then these "hotwired" liver cells will not be targeted.  (Unfortunately, if beta cells are targeted because they generate insulin, then these new cells will be targeted as well, and this research will not lead to a cure.)

Finally, gene therapy involves risk; it is still in it's infancy.  I think that risk is scaring away pharma money, and for me, that is a good reason for JDRF to put some money in. This company is hoping to go into clinical trials in 2018.  I'm hoping some JDRF money could get them there faster.

If more than one research group is working on turning liver cells into functional beta cells, then I'd organize a "cage fight," as described below, between the data from the different groups.

Artemisinin-Class Cage Fight
http://www.techtimes.com/articles/187635/20161203/malaria-drug-artemisinin-spurs-cells-to-produce-insulin-shows-promise-as-type-1-diabetes-treatment.htm

Artemisinin is an antimalarial drug, which (in animals) encourages pancreatic alpha cells to naturally morph into beta cells.  Since beta cells are what are being killed off in type-1 diabetes, this is important.  However, I've never thought that a drug like this could cure type-1 by itself, because the body's autoimmune attack would kill off the new beta cells same as it killed off the old ones. However, a drug like this might end up being half of a cure; the other half would be something to stop the autoimmune attack.  It also may extend the honeymoon period, or maybe make the honeymoon permanent.  And getting the body to generate it's own beta cells might be a lot easier than producing them from stem cells, growing them in test tubes, or whatever.

Now I don't want to just say "fund Artemisinin", partly because it's only half a cure, and partly because I think there are several drugs with effects potentially similar to this one.  That is where the "cage fight" comes in.  I want JDRF to lock some of their research staff in a room with all the animal data for all the drugs which are supposed to help convert alpha cells into beta cells, and then reach consensus among themselves as to which of the drugs is most promising in animals (especially NOD mice), and fund that one.  This form of research "cage fight" involves comparing the existing data on specific results in a head-to-head way, and funding only the best.  (If you read the book Moneyball you will see some similarities.)  If JDRF is feeling flush, maybe they can fund the top two.  Of course, maybe they already do this, and I just don't know about it.

Quarterback Option (on Phase-I)

For those of you who do not follow American football: a quarterback option is when one player takes the ball and starts a play, and then, based on what the  other team does during the play, changes the play to try to take advantage of what is seen, as it happens.  In this context, what I mean is that JDRF should pay particular attention to several interesting, ongoing phase-I trials, and if any of them are clearly successful, rush some funding in there quickly.

By "clearly successful" I don't mean that the researchers themselves say it is a success (they almost always do).  Rather, before the study is published, I think JDRF's team should look at the data being gathered, and decide internally what level of result would cause JDRF to call up the researchers the week after publication and say "We've got a half million dollars (or whatever) and we want to push your research ahead, quickly.  What can we do together, now."

For example, there is a 5 person, 6 month, phase-I combination trial of Exsulin and Ustekinumab. Now Exsulin (previously known as INGAP) has been tested twice before, in much larger trials, and did not have good results either time, so I'm not "holding my breath".  But combining it with Ustekinumab is unique, and could be the missing link needed for success.   This trial is so small that even success might not be successful enough to get pharma interested.  But if JDRF had a preloaded internal decision, something like if two or more patients do not need to inject insulin for 4 or more months then they should release 1/2 million or a million for quick-starting phase-I trial to get some more data (maybe lasting longer, or enrolling children, or testing different doses, or something that builds on the previous trial).

I think JDRF should have these sort of preloaded funding triggers ready for many of the small phase-I trials that are ongoing.  Of course, maybe they do, and I just don't know about it.

Discussion

Choosing these particular research areas was hard for several reasons:

The hardest to explain is the success/support trade off.  To put it bluntly, if research is really successful already, there is little need for JDRF to fund it, because companies will already be interested in it, and will fund it themselves without non-profit help.  So there is no need for JDRF to fund research which has already been successful enough to attract corporate support.

On the other hand, I don't want to suggest that JDRF fund a bunch of research which is failing, either! So I'm looking for research which is in a "sweet-spot".  It shows promise and deserves some extra funding, but is not so obviously successful that commercial companies already have enough information to fund it.

This "sweet-spot" exists mostly as phase-I clinical trials and research which is almost ready to start phase-I trials.  If research has started phase-II trials, then pharma is likely already interested in it, and even if not, by the end of phase-II there will certainly been enough news to attract pharma, if the news is good.  On the other hand, any earlier in animal tests, means the chance of failure is high enough, that I'd prefer to put money into something a little more promising.  So all of the research I suggested above is either in phase-I trials, or near to starting them.

One of the reasons I've never made a blog posting like this one, is that I know I'm going to piss off every researcher not on the list above (which is most of them!)   And I'm sorry for that.  If it's any consolation, many of the already running clinical trials are not here either because pharma is already supporting them (example: T-Rex, artificial pancreases, Viacyte, etc) or because the existing trials are large enough so that they will answer the important questions without more funding (examples: BCG, Gleevec, etc.)


Joshua Levy
http://cureresearch4type1diabetes.blogspot.com 
publicjoshualevy at gmail dot com
All the views expressed here are those of Joshua Levy, and nothing here is official JDRF or JDCA news, views, policies or opinions. My daughter has type-1 diabetes and participates in clinical trials, which might be discussed here. My blog contains a more complete non-conflict of interest statement. Thanks to everyone who helps with the blog.

Friday, December 16, 2016

The Impact of Advocacy

This blog is a little different from my usual subject matters.  Instead of reporting on the status of various clinical trials, I'm going to discuss a paper by Rachel Kahn Best entitled Disease Politics and Medical Research Funding: Three Ways Advocacy Shapes Policy.   This paper is about how the US government funds research into diseases.

Here is the paper: http://asr.sagepub.com/content/77/5/780.full.pdf+html
but it might require payment to see by the time I post this blog entry.  Here is some coverage of the paper:
http://scienceblog.com/56900/patient-led-advocacy-has-changed-how-us-government-funds-medical-research/#t3OR5WHhyOzpFFBc.99

My Summary of Best's Paper:
  • Prior to 1980s funding of medical research:
    • Was viewed as a benefit to the researchers being funded
    • Was allocated based on perceived quality of the proposed research
  • During the late 1970s to 1980s there were large social movements (largely focused on AIDS and breast cancer) which changed governmental thinking and policies
  • Starting in the 1990s funding of medical research:
    • Was viewed as a benefit to the people with the disease being researched
    • Was allocated based on impact of the disease being researched
  • Advocacy organizations can have a large impact in government funding of medical research. There is a strong link between advocacy and funding.
Some Details

Here is a key quote on funding:
Increases in the number of nonprofits and lobbying expenditures are both significantly associated with increases in research funding, with each $1,000 spent on lobbying associated with a $25,000 increase in research funds the following year.
Underfunding of Diseases Common to Women and African-Americans

Most of the news coverage of this paper has focused on the "underfunding" of women's and African-Americans' diseases.  This paper discusses the idea that research into diseases of women and African-Americans are underfunded in comparison to diseases of men and whites, including possible reasons for this.  Based on the available data, the paper suggests that the difference is caused by a lack of advocacy organizations.  That funding is based on advocacy organizations, and there are fewer advocacy organization for diseases of women and African-Americans as compared to men and whites.  (Put bluntly: the difference is more directly caused by economic discrimination rather than sexism or racism.)

However, rather than discuss this conclusion, I think it is more important to discuss the weaknesses of the basic idea that diseases of women and African-Americans are underfunded.  The paper lists these weaknesses very clearly:

First, women's diseases are NOT underfunded with respect to men's diseases.    A more accurate statement is that, for women's diseases, breast cancer is funded at a much higher level than men's diseases, and all other women's diseases are funded at a lower level, and everything averages out.  A serious argument can be made that funding should be allocated more evenly among women's diseases, but not that women's diseases as a whole are underfunded.  (Remember that breast cancer has several very strong advocacy organizations, which likely leads to it's "overfunding".)

Second, when the study talked about African-American's diseases being underfunded compared to others, it is very important to remember that only one disease uniquely common to African-Americans was included in the analysis: sickle cell anemia.  So when the study said African-Americans' diseases were underfunded, what it really meant was that sickle cell anemia was underfunded.  (That does sound racist, but it's a single data point, so I'm nervous about reading too much into it.)

Questions for you to Consider

You will notice I'm making no attempt to answer any of the questions below.  Each one of them is a separate "can of worms": worthy of an all night "bull session" in a college dorm room, with some good friends, over some beers.  They are the kind of questions where the discussion is more important than the answer (especially since most of them have no absolute answer).

1. Which model do you think should be the foundation of research funding?  Should research be funded as a benefit to the researchers or to the patients?

2. If you are a proponent of funding based on patient impact, then how do you deal with the problem of diseases which target people who are already discriminated against, being underfunded specifically due to that discrimination?   Early on many believed that AIDS was underfunded specifically because the administration (at the time) didn't care about gays.

3.  If you accept that medical research should be funded based on impact to patients, then how do you measure that impact?
  • Do you measure in terms of number of deaths?  If so, type-1 diabetes will have a relatively lower priority, since it is a less common direct cause of death.
  • Do you measure in terms of number of people with the disease?  If so, minor but common diseases (like the common cold) might get prioritized higher than major (but rare) killers like bone cancer. 
  • What impact should age have?  If two diseases kill the same number of people, but one kills 20 year olds, while the other kills 80 year olds, should they get equal funding?  (This is a classic AIDS vs. cancer argument.)
  • Although mortality and prevalence are common ways to measure impact, from society's point of view, lost productivity might be a better measure.  It does serve to merge depth and breadth of impact into one number.  But then are we going to fund "diseases of the rich" over "diseases of the poor"?  Because when we start measuring economic impact, that's often what it boils down to.
4.  If you accept that medical research should be funded based on impact to patients, then do you take into account other facts about your patients?
  • What impact should preventability have?  Consider three diseases: liver disease, syphilis, and type-1 diabetes:  Liver disease is often (but not always!) caused by alcoholism or drug addiction. Syphilis can be prevented via safe sex.  Type-1 diabetes can not be avoided in any way.  Should these facts impact the funding level for research into these diseases?
  • Many people are willing to underfund research into "diseases" like alcoholism and drug abuse (?are those diseases, or just bad habits?)  But what about lung cancer?  Are you going to fund research into curing the type that smokers get, or just the type that non-smokers get?  What about types that are more common in smokers but occasionally pop up in non-smokers?
Why did I write this blog?
Although we often don't think about it, the federal government is a huge funder of research aimed at curing type-1 diabetes (maybe the largest).  Even research they did not fund directly is often done by programs or sites they did fund.  Therefore, understanding what motivates federal spending is important to understanding research aimed at curing type-1 diabetes.  Even though this is not directly about a clinical trial, I still thought it was interesting and important to blog on.

Joshua Levy
All the views expressed here are those of Joshua Levy, and nothing here is official JDRF or JDCA news, views, policies or opinions. My blog contains a more complete non-conflict of interest statement.
Clinical Trials Blog: http://cureresearch4type1diabetes.blogspot.com

Saturday, November 5, 2016

Possible Cures for Type-1 in the News (November)


Ustekinumab Is Fully Enrolled

Ustekinumab, an immune modulating drug, started a Phase-II? trial in July 2014.  I previously blogged about it here:
http://cureresearch4type1diabetes.blogspot.com/search/label/Ustekinumab

They completed enrollment on May 24, 2016, which means they should finish gathering data by May 24, 2017, because they need to gather data for a year.  Successful results are usually published in less than a year after completion.

This drug was approved in the US in 2009 for treating psoriasis, which is an autoimmune disease (where the immune system self attacks skin cells rather than pancreas cells, as with type-1).  It has also been tested on multiple sclerosis, Crohn's disease, and sarcoidosis (also all autoimmune diseases).  Ustekinumab is thought to work by blocking inflammation, and specifically blocking two immune molecules called IL-12 and IL-23.

Clinical Trial Record: https://clinicaltrials.gov/ct2/show/NCT02117765

In July, A Phase-II? Verapamil Trial Was 20% Enrolled
A research group at the University of Birmingham (Alabama) is testing Verapamil on people in the honeymoon period.  The hope is that Verapamil will cause beta cells to naturally regrow.  I've previously blogged on this research here:
https://cureresearch4type1diabetes.blogspot.com/search/label/Verapamil

They have been recruiting for over a year, but have only enrolled 12 people, out of the 52 they need. At this rate, they will not be fully enrolled within 2 years as they had hoped, and that's a problem.

The drug they are testing is already approved (and pretty widely used) for high blood pressure, so it should not be that hard to recruit for this study.  However, only adults can be recruited (per FDA rules).  Obviously, limiting recruitment to adults still in their honeymoon phase makes this process much more difficult, since most honeymooners are youth, not adults.

Terminated: Leptin by Garg at University of Texas

On June 23, 2015 a Phase-I trial of Leptin being run by Dr. Garg at the University of Texas, was cancelled.  The clinical trial record says terminated at the request of the sponsor.  Since it was being sponsored by JDRF and by Amylin (which makes Leptin), I assume that Amylin shut down the research. You can read my previous blogging here:
http://cureresearch4type1diabetes.blogspot.com/search/label/Leptin

At one time they were going to dose 15 people, but they ended up only dosing 7.   It was a Phase-I, pilot study, so there was no control group.  The researchers do hope to publish results, and I'll blog on them when they come out.

Clinical Trial Record: https://clinicaltrials.gov/ct2/show/NCT01268644


Joshua Levy 
http://cureresearch4type1diabetes.blogspot.com 
publicjoshualevy at gmail dot com 
All the views expressed here are those of Joshua Levy, and nothing here is official JDRF or JDCA news, views, policies or opinions. My daughter has type-1 diabetes and participates in clinical trials, which might be discussed here. My blog contains a more complete non-conflict of interest statement. Thanks to everyone who helps with the blog.

Wednesday, October 19, 2016

Golimumab / SIMPONI Starts a Phase-II? Trial (T1GER)

Golimumab (sold as Simponi) is an immune system modulator, which has been approved in the United States and many other countries for treatment of several autoimmune diseases, so testing it on type-1 diabetes makes a lot of sense.  It has already been approved to treat rheumatoid arthritis, psoriatic arthritis, ulcerative colitis, and ankylosing spondylitis.

The Study

This study will enroll 81 people.  Half will get the treatment, and half will get a placebo, as the study is double blind.  The treatment is a subcutaneous injection once a week.  This is the same kind of injection used for insulin itself.  Everyone will be followed for two years.  The primary data will be C-peptide generation (a marker for natural insulin production), and the secondary data includes A1c, insulin usage, side effects, more C-peptide data, etc.

They started in August 2016 and plan to run until October 2019.

The researchers are planning on recruiting at 30+ different locations throughout the United States. Their clinical trials page says that right now they are only active in Atlanta, Georgia and Lexington, Kentucky. However, I do think they are actively recruiting in Walnut Creek, California as well. (People often forget to update their clinical trial record as they add more sites.)   The contact point for enrollment is this email address: JNJ.CT@sylogent.com.

Discussion

Golimumab is a monoclonal antibody (meaning it very specifically targets one type of cell). In particular, Golimumab targets TNFα (Tumor Necrosis Factor alpha) an immune signalling protein, which triggers several immune responses, including inflammation.  This is slightly controversial because researchers such as Dr. Faustman are trying to cure type-1 diabetes by increasing the levels of TNFα, while these researchers are trying to cure type-1 diabetes by decreasing the levels of TNFα. This issue came up in 2009, when Embrel (which lowers TNFα) had a mildly successful Phase-I trial. I discussed the "TNFα: Friend or Foe" at that time:
http://cureresearch4type1diabetes.blogspot.com/search/label/ENBREL

This study is being done by Janssen Research and Development, which is a large pharmaceutical company.

Clinical Trials Registry: https://clinicaltrials.gov/ct2/show/study/NCT02846545
Drug Web Page: http://www.simponi.com/
Drug Wikipedia Page: https://en.wikipedia.org/wiki/Golimumab
TNF  Wikipedia Page: https://en.wikipedia.org/wiki/Tumor_necrosis_factor_alpha

Joshua Levy
http://cureresearch4type1diabetes.blogspot.com
publicjoshualevy at gmail dot com
All the views expressed here are those of Joshua Levy, and nothing here is official JDRF or JDCA news, views, policies or opinions. My daughter has type-1 diabetes and participates in clinical trials, which might be discussed here. My blog contains a more complete non-conflict of interest statement. Thanks to everyone who helps with the blog.

Wednesday, October 5, 2016

JDRF Funding for a Cure 2016

In the US, we are in the "Walking Season" when JDRF asks us to walk to raise money for a cure. So I'd like to do my part, by reminding you all of how important JDRF is to the human trials of potential cures for type-1 diabetes, which I track.

Let me give you the punch line up front: 71% of the treatments currently in human trials have been funded by JDRF. (And the number is 83% for the later phase trials) This is a strong impact; one that any non-profit should be proud of. This summary does not include Artificial Pancreas research or stem cell growth trials, because there are so many of those that it would be hard to include them all.

Below is a list of all the potential cures, grouped by phase of trial that they are currently in, and separated into potential cures that JDRF has funded, and those that JDRF has never funded.

This list is a list of treatments, and many of these are being tested in more than one clinical trial.  For example, the "ATG and autotransplant" treatment is actually running three trials, but since they are all testing the same treatment, it is only one item in the list. The list below uses the following marks to show the nature of the treatments:
    (Established) One or more trials are open to people who have had type-1 diabetes for over a year.
    (Prevention) This treatment is aimed at preventing type-1 diabetes, not curing it.

Also remember that I give an organization credit for funding a treatment if they funded it at any point in development; I don't limit it to the current trial. For example, JDRF is not funding the current trials for AAT, but they did fund earlier research into it, which helped it grow into human trials. I include indirect funding of various kinds. For example, the JDRF funds nPOD,  ITN, and several other organizations, so I include research done by these other groups as well as being indirectly JDRF funded.

New This Year: Phase-II? Trials
Starting this year, I'm dividing Phase-II trials into two groups.  Phase-II trials are "classic" phase-II trials; they are done after a successful Phase-I trial in type-1 diabetes.  What I call Phase-II? trials are done with treatments which are known safe, so they don't need Phase-I trials, but have never been tested on type-1 diabetes before.  These Phase-II? trials might be Phase-II from the point of view of safety, but they are Phase-I in terms of effectiveness, so I'm putting them in their own category.

Cures in Phase-III Human Trials
Summary: currently there are no treatments aimed at curing type-1 diabetes which are in phase-III trials (under the definition of cure that I use). This is the fourth year in a row there have been no phase-III trials underway, and it's not a good thing. Even worse, I don't see a phase-III study starting even next year.  Some people might be discouraged by that, but for me, it's a reason to donate.  Money is the thing that is going to move the Phase-II studies listed below into Phase-III studies, and the Phase-I studies to Phase-II, create more Phase-I studies, and so on.

Cures in Phase-II Human Trials
Summary: there are 24 trials in phase-II, and 20 of them have been funded by JDRF, while 4 have not. Here are the treatments that have been funded by JDRF:
  • AAT (Alpha-1 Antitrypsin) by Grifols Therapeutics and also Kamada 
  • ATG and GCSF by Haller at University of Florida (Established) 
  • Abatacept by Orban at Joslin Diabetes Center 
  • Abatacept by Skyler at University of Miami (Prevention) 
  • Aldesleukin (Proleukin) at Addenbrooke’s Hospital, Cambridge, UK 
  • Diabecell by Living Cell Technologies (Established) 
  • Diamyd, Ibuprofen ("Advil"), and Vitamin D by Ludvigsson at Linköping University
  • Diamyd, Etanercep, and Vitamin D  by Ludvigsson at Linköping University
  • Diamyd and Vitamin D by Larsson at Lund University (Prevention)
  • Gleevec by Gitelman at UCSF 
  • Gluten Free Diet: Three Studies  (Preventative)
  • Oral Insulin (Preventative) 
  • Polyclonal Tregs by both Trzonkowski and Gitelman  
  • Stem Cell Educator by Zhao (Established) 
  • Teplizumab (AbATE study team) 
  • Teplizumab by Herold/Skyler/Rafkin (Prevention)
  • Tocilizumab by Greenbaum/Buckner at Benaroya Research Institute 
  • Umbilical Cord Blood Infusion by Haller at University of Florida 
  • Ustekinumab by University of British Columbia
  • Verapamil by Shalev/Ovalle at University of Alabama at Birmingham
Not funded by JDRF:
  • ATG and autotransplant by Burt, and also Snarski, and also Li 
  • BCG by Faustman at MGH (Established) 
  • Dual Stem Cell by Tan at Fuzhou General Hospital 
  • Vitamin D by Stephens at Nationwide Children's Hospital (Prevention)
Cures in Phase-II? Human Trials
Summary: there are 4 trials in phase-II, and 1 of them has been funded by JDRF, while 3 have not. Here are the treatments that have been funded by JDRF:
  • Rituximab by Pescovitz at Indiana University
Not funded by JDRF:

  • Albiglutide by GlaxoSmithKline
  • Ladarixin by  Emanuele Bosi of Dompé Farmaceutici 
  • Rapamycin Vildagliptin Combo by IRCCS (Established)
Cures in Phase-I Human Trials
Summary: there are 24 trials in phase-I, and 16 of them are funded by JDRF, while 8 are not. Here is the list funded by JDRF:
  • Alefacept by TrialNet 
  • ßAir by Beta-O2's at Uppsala University Hospital in Sweden (Established) 
  • TOL-3021 by Bayhill Therapeutics (Established) 
  • CGSF by Haller at University of Florida 
  • Trucco at Children’s Hospital of Pitt / Dendritic Cells (DV-0100) by DiaVacs (Established) 
  • Exsulin and Ustekinumab by Rosenberg at Jewish General Hospital, Canada (Established) 
  • IBC-VS01 by Orban at Joslin Diabetes Center 
  • Leptin by Garg at University of Texas 
  • Metformin by Littleford at The University of Exeter (Prevention)
  • MultiPepT1De (Multi Peptide Vaccine) by Powrie at King’s College London
  • Nasal insulin by Harrison at Melbourne Health (Prevention)
  • Smart Insulin (MK-2640) by Merck (Established) 
  • Tauroursodeoxycholic Acid (TUDCA) by Goland at Columbia University
  • Polyclonal Tregs by both Trzonkowski and Gitelman 
  • Pro insulin peptide by Dayan at Cardiff University 
  • VC-01 by Viacyte (Established)
Not funded by JDRF:
  • CGSF and autotransplant by Esmatjes at Hospital Clinic of Barcelona (Established) 
  • Encapsulated Islets at University clinical Hospital Saint-Luc (Established) 
  • Mesenchymal Stromal Cell by Carlsson at Uppsala University
  • Microvesicles (MVs) and Exosomes by Nassar at Sahel Teaching Hospital 
  • Monolayer Cellular Device (Established) 
  • Rilonacept by White at University of Texas 
  • Substance P by Vanilloid Genetics at Hospital for Sick Children Toronto (Established)
  • The Sydney Project, Encapsulated Stem Cells (Established) 
    Summary of all Trials
    52 in total
    37 funded by JDRF
    So 71% of the human trials currently underway are funded (either directly or indirectly) by JDRF. Everyone who donates to JDRF should be proud of this huge impact; and everyone who works for JDRF or volunteers for it, should be doubly proud.

    Just Looking at Trials on Established Type-1 Diabetics
    15 of these treatments (29%) are being tested on established type-1 diabetics.
    Of these, 9 are funded by JDRF
    So 60% of the trials recruiting established type-1 diabetics are funded by JDRF.

    Compared to Last Year
    In 2015 there were 42 treatments in clinical trials, in 2016 there are 52 (growth of 24%)
    In 2015 there were no treatments in Phase-III trials, in 2016 there are none (no change).
    In 2015 there were 22 treatments in Phase-II and Phase-II? trials, in 2016 there are 28 (growth of 27%).
    In 2015 there were 20 treatments in Phase-I trials, in 2016 there are 24 (growth of 20%).

    How I Count Trials for This Comparison
    • I give an organization credit for funding a cure if it funded that cure at any point in it's development cycle. 
    • I mark the start of a research trial when the researchers start recruiting patients (and if there is any uncertainty, when the first patient is dosed). Some researchers talk about starting a trial when they submit the paper work, which is usually months earlier. 
    • If there are different clinical trials aimed at proving effectiveness as a cure and as a preventative, or effectiveness in honeymooners and established diabetics, then those are counted separately. 
    • For trials which use combinations of two or more different treatments, I give funding credit, if the organization in the past funded any component of a combination treatment, or if they are funding the current combined treatment. Also, I list experiments separately if they use at least one different drug. 
    • The ITN (Immune Tolerance Network) has JDRF as a major funder, so I count ITN as indirect JDRF funding. 
    • I have made no attempt to find out how much funding different organizations gave to different research. This would be next to impossible for long research programs, anyway. 
    • Funding of research is not my primary interest, so I don't spend a lot of time tracking down details in this area. I might be wrong on details. 
    • I use the term "US Gov" for all the different branches and organizations within the United States of America's federal government (so includes NIDDK, NIAID, NICHD, etc.) 
    • I don't work for the US Gov, JDRF, or any of the other organizations discussed here. I have a more complete non-conflict of interest statement on my web site. 
    Some Specific Notes:
    • Serova's Cell Pouch and DRI's BioHub: These two clinical trials are both testing one piece of infrastructure which might be used later in a cure. They are testing a part of a potential cure. However, in both cases, the clinical trials being run now require immunosuppression for the rest of the patient's life, so I'm not counting them as testing a cure.
    • Substance P at Hospital for Sick Children Toronto: This trial is avoiding the honeymoon period by tested for insulin production.  Patients must inject more than 1/2 unit/kg to be accepted, therefore they will accept recently diagnosed people, if they are injecting enough insulin to be passed the honeymoon.  I'm counting this as "Established".
    Treatments Removed This Year:
    • Etanercept (ENBREL) by Quattrin at University at Buffalo (no movement since 2008)
    • Brod at University of Texas-Health Science Center (no movement since 2009)

    This is an update and extension to blog postings that I've made for the previous seven years:
    Finally, please remember that my blog (and therefore this posting) covers research aimed at curing or preventing type-1 diabetes that is currently being tested in humans. There is a lot more research going on, not covered here.

    Special Note: The JDRF's Role in The First Artificial Pancreas Approval by The FDA
    Although not strictly a "cure" the artificial Pancreas is clearly a huge breakthrough in diabetes treatment which will vastly lower complications, hassle, and "dead in bed" situations.  The JDRF deserves a lot of credit for getting an AP to market now.   First, the JDRF funded a lot of the basic research (and some not-so-basic research as well).   But it also helped clear the regulatory hurdles.  Even five years ago, the FDA's policies and procedures made it very difficult to get an AP approved (even one that worked well).  Simpler medical devices were approved in the EU many months before they were approved in the US.  The JDRF was instrumental in changing that.  The JDRF organized and led an informal consortium of diabetes advocates which, on the one hand, assembled scientific evidence and, on the other hand, applied grassroots political pressure which together resulted in the FDA adopting reasonable policies, and (eventually) this AP approval.

    Please think of this posting as being my personal "thank you" note to all the JDRF staff, volunteers, and everyone who donates money to research a cure for type-1 diabetes:
    Thank You!
    Finally, if you see any mistakes or oversights in this posting, please tell me! There is a lot of information packed into this small posting, and I've made mistakes in the past.

    Joshua Levy
    http://cureresearch4type1diabetes.blogspot.com
    publicjoshualevy at gmail dot com 
    All the views expressed here are those of Joshua Levy, and nothing here is official JDRF or JDCA news, views, policies or opinions. My daughter has type-1 diabetes and participates in clinical trials, which might be discussed here. My blog contains a more complete non-conflict of interest statement. Thanks to everyone who helps with the blog.

    Saturday, October 1, 2016

    Rapamycin Vildagliptin Combo Start a Phase-II? Clinical Trial


    These researchers are running a three-armed clinical trial.  One group will get two drugs: Vildagliptin and Rapamycin.  Another group will get Rapamycin and a placebo, while a third group will get two placebos.

    Rapamycin is an immune modulator, so (I assume) it is being used to shut down the autoimmune attack. Vildagliptin is given to type-2 diabetics because it increases their insulin output.  Recent research suggests that it does this both by encouraging beta cell replication and by reducing natural beta cell death (see more discussion below).  Both of these would be valuable if Rapamycin is successful in lowering the autoimmune attack on beta cells.

    There will be 20 people in each group.  All patients will be adults (over 18 years old), who have had type-1 diabetes for five years or longer.  This is NOT a honeymoon trial.  Data will be collected over a 12 week period.  The trial started in May of 2016 and they hope to finish by December 2018.

    The primary outcome is C-peptide response (a marker for natural insulin production), and secondary outcomes include insulin use, A1c numbers, more C-peptide data, and adverse reactions.

    This trial is recruiting in Milan, Italy:
        IRCCS San Raffaele Scientific Institute
        Contact: Lorenzo Piemonti, MD       piemonti.lorenzo@hsr.it    phone: 0226432706 ext +39
        Contact: Andrea Bolla, MD       andrea.bolla@hsr.it    phone: 0226432822 ext +39

    Clinical Trial Record: https://clinicaltrials.gov/ct2/show/NCT02803892
    Wikipedia entries:
        https://en.wikipedia.org/wiki/Sirolimus
        https://en.wikipedia.org/wiki/Vildagliptin

    Discussion

    There is a lot to like about this study.  First, the people being treated have had type-1 for a long time. Second, it's the kind of combination therapy (one drug to lower the immune attack, another to spur beta cell regrowth) that a lot of researchers have been talking about for years.  Finally, it's quick.  They will follow people for about 3 months, which means results will be available soon.  Also, the drugs are already approved for use (one in the US the other in Europe) which should make them easier to get.

    The official title for this study is "Monotherapy With Rapamycin in Long-standing Type 1 Diabetes (MONORAPA)", but I have no idea why, as it's clearly testing a combination therapy, not a monotherapy.

    I'm considering this trial to be a Phase-II? ("Phase-II previously untested") trial, because these two drugs have never been tested together for type-1 diabetes, but Rapamycin/Sirolimus alone is being actively tested in several different clinical trials, which I've blogged about before:
    http://cureresearch4type1diabetes.blogspot.com/search/label/IL-2

    Vildagliptin (sold as Galvus) is approved in Europe as a treatment for type-2 diabetes.  It is a member of a class of drugs called DPP-4 inhibitors.  More famous members of this class include Januvia and Tradjenta.  Another name for DPP-4 is CD26.

    Sirolimus (also known as Rapamycin) is an IL-2 inhibitor and immunosuppressant.  It was approved in the US in 1999 for organ rejection and cancer.

    About "Natural Cell Death"

    It's important to remember that individual cells do not last as long as people live.  Cells naturally die and new cells grow within your body all the time.  Research (mostly in animals) has suggested that Vildagliptin might have two separate effects on beta cells.  On the one hand, it seems to cause beta cells to naturally divide and grow, and on the other hand, it seems to delay beta cell's "natural death", so they live longer.    Both of these effects may be important to curing type-1 diabetes, but it is not clear.  This is why research is important.  For example, even if Vildagliptin triggers a divide-and-grow reaction, it will only be effective if there are some beta cells to start with, and we just don't know if there are enough to get things started.  On the cell death side, if the autoimmune attack directly kills beta cells, then stopping natural cell death may have little impact.  Those cells will be killed by autoimmunity before they can die of "old age".  However, if the autoimmune attack works by triggering natural cell death (which some researchers believe) then slowing natural cell death could have a large impact.

    Joshua Levy
    http://cureresearch4type1diabetes.blogspot.com
    publicjoshualevy at gmail dot com
    All the views expressed here are those of Joshua Levy, and nothing here is official JDRF or JDCA news, views, policies or opinions. My daughter has type-1 diabetes and participates in clinical trials, which might be discussed here. My blog contains a more complete non-conflict of interest statement. Thanks to everyone who helps with the blog.

    Thursday, September 15, 2016

    Substance P Starts a Phase-I Clinical Trial

    Substance P is a peptide (a part of a protein) which is used by several different organs and for several different purposes.   Research done in the early 2000s found that a specific type of neuron (called "TRPV1(+) pancreatic sensory neurons") control islet inflammation and insulin resistance. Removing these neurons from NOD mice prevented diabetes from developing.  Injecting NOD mice with Substance P, which affects these neurons, cured diabetes.   This clinical trial will test this same treatment in people, rather than mice.

    People who have followed type-1 diabetes research for a long time might remember the news stories that injecting capsaicin (the active ingredient in hot chilis) would cure type-1 diabetes.  They were first published in 2006 and get recycled every now and then.  (Usually as examples of the grand conspiracy to suppress type-1 cures, especially cheap, natural cures.)  Anyway, the idea that capsaicin would cure type-1 diabetes comes out of this same line of research in NOD mice.  Capsaicin and Substance P are different, but they affect the same neurons in the pancreas, and the researchers tested both and reported on both in the same journal article.  The clinical trial is Substance P only, no capsaicin.

    The Study

    This Phase-I trial will start out enrolling 12 kids (between 10 and 18 years old) and later expand to 40 kids.  They are looking for people who were diagnosed "recently" but have already passed through their honeymoon period.  Their definition of "done with the honeymoon" is needing to inject more than 1/2 a unit of insulin per kilogram of body weight per day.  

    They are testing four different doses of Substance P.  So no one will get a placebo, everyone will get the treatment, just at different doses.  People will get a single intravenous dose of Substance P, and will be followed for 6 months.  The primary outcome for this study is safety (prevalence of side effects), while the secondary outcomes are measuring effectiveness (C-peptide, a surrogate for natural insulin production).

    The study started in May 2016 and they hope to finish in September 2017 (I assume that is for the 12 person part of the study).

    They are recruiting at one location in Canada: Hospital for Sick Children  Toronto, Ontario
    Contact: Holly Tschirhart    416-813-7654 ext 204517    holly.tschirhart@sickkids.ca
    Contact: Catherine Pastor    416-813-7654 ext 204396    catherine.pastor@sickkids.ca


    A Little History

    The history of this research really brought home to me the slow pace of research in general.  Here is a brief timeline:

    1990s Earliest research into Substance P and type-1 diabetes.
    2000 People with type-1 diabetes have less Substance P.
            http://www.ncbi.nlm.nih.gov/pubmed/10926310
    2006 Publication of cure results in NOD mice.
            http://www.ncbi.nlm.nih.gov/pubmed/17174891
    2007 "We expect to begin intervention studies in 2008"
            https://www.diabetesdaily.com/forum/research-clinical-trials/9491-response-dr-h-m-dosch-substance-p/
    2016 Intervention studies actually start.

    If you want a single golden example of why there is so much false hope that a cure for type-1 diabetes is just around the corner, read this article, originally published in 2006:
    http://www.naturalnews.com/021345.html
    Note the last sentence:
    "Dosch and Salter expect to complete human trials of the treatment in the next year."
    But also consider the general level of optimism and simplicity in the news report.  But the truth was completely different.  Now, 10 years after this news article, the research is just starting clinical trials.

    This is the first clinical trial run by this company, Vanilloid Genetics Inc, which was founded by Dr. Dosch (and others), one of the original researchers from the NOD mice work in 2006.

    Clinical Trial Registry: https://clinicaltrials.gov/ct2/show/NCT02820558
    Wikipedia: https://en.wikipedia.org/wiki/Substance_P

    Joshua Levy
    http://cureresearch4type1diabetes.blogspot.com
    publicjoshualevy at gmail dot com
    All the views expressed here are those of Joshua Levy, and nothing here is official JDRF or JDCA news, views, policies or opinions. My daughter has type-1 diabetes and participates in clinical trials, which might be discussed here. My blog contains a more complete non-conflict of interest statement. Thanks to everyone who helps with the blog.